Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide
نویسندگان
چکیده
Zn-ion batteries are emerging energy storage systems eligible for large-scale applications, such as electric vehicles. These batteries consist of totally environmentally-benign electrode materials and potentially manufactured very economically. Although Zn/α-MnO2 systems produce high energy densities of 225 Wh kg(-1), larger than those of conventional Mg-ion batteries, they show significant capacity fading during long-term cycling and suffer from poor performance at high current rates. To solve these problems, the concrete reaction mechanism between α-MnO2 and zinc ions that occur on the cathode must be elucidated. Here, we report the intercalation mechanism of zinc ions into α-MnO2 during discharge, which involves a reversible phase transition of MnO2 from tunneled to layered polymorphs by electrochemical reactions. This transition is initiated by the dissolution of manganese from α-MnO2 during discharge process to form layered Zn-birnessite. The original tunneled structure is recovered by the incorporation of manganese ions back into the layers of Zn-birnessite during charge process.
منابع مشابه
Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries
Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxide...
متن کاملThe Conversion of Isosafrole to Piperonal and Anethole to Anisaldehyde: Electrochemical Active Manganese Dioxide
A&met-Non-stoichiometric manganese dioxide prepared electrochemically at room temperature and suspended in dilute sulphuric acid is used to oxidise isosafrole to piperonal in 54% isolated yield. The manganese dioxide-manganese@) sulphate system can be recycled electrochemically at high current density. It has the further advantage that water-soluble materials derived from the chemical oxidation...
متن کاملElastic Layered Metal-organic Framework Sorbents for Carbon Capture
Introduction Elastic layered metal-organic framework (ELM) adsorbents exhibit a flexible two-dimensional latent porous crystalline structure. ELMs undergo abrupt reversible gated sorption transitions from an empty collapsed structure to a filled expanded porous state through cooperative adsorption of guest molecules between layer planes. Gated adsorption has been observed for methane, nitrogen,...
متن کاملExploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries.
Large-scale electric energy storage is fundamental to the use of renewable energy. Recently, research and development efforts on room-temperature sodium-ion batteries (NIBs) have been revitalized, as NIBs are considered promising, low-cost alternatives to the current Li-ion battery technology for large-scale applications. Herein, we introduce a novel layered oxide cathode material, Na0.78Ni0.23...
متن کاملDISSOLUTION KINETICS OF MANGANESE DIOXIDE ORE IN SULFURIC ACID IN THE PRESENCE OF FERROUS ION
Abstract: In this paper, kinetics of reductive leaching of manganese dioxide ore by ferrous ion in sulfuric acid media has been examined. Experimental results show that increasing temperature from 20 to 60 °C and decreasing ore particle size from −16+20 to −60+100 mesh considerably enhance both the dissolution rate and efficiency. Molar ratios of Fe2+/MnO2 and H2SO4/MnO2 in excess to the st...
متن کامل