Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide

نویسندگان

  • Boeun Lee
  • Chong Seung Yoon
  • Hae Ri Lee
  • Kyung Yoon Chung
  • Byung Won Cho
  • Si Hyoung Oh
چکیده

Zn-ion batteries are emerging energy storage systems eligible for large-scale applications, such as electric vehicles. These batteries consist of totally environmentally-benign electrode materials and potentially manufactured very economically. Although Zn/α-MnO2 systems produce high energy densities of 225 Wh kg(-1), larger than those of conventional Mg-ion batteries, they show significant capacity fading during long-term cycling and suffer from poor performance at high current rates. To solve these problems, the concrete reaction mechanism between α-MnO2 and zinc ions that occur on the cathode must be elucidated. Here, we report the intercalation mechanism of zinc ions into α-MnO2 during discharge, which involves a reversible phase transition of MnO2 from tunneled to layered polymorphs by electrochemical reactions. This transition is initiated by the dissolution of manganese from α-MnO2 during discharge process to form layered Zn-birnessite. The original tunneled structure is recovered by the incorporation of manganese ions back into the layers of Zn-birnessite during charge process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries

Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxide...

متن کامل

The Conversion of Isosafrole to Piperonal and Anethole to Anisaldehyde: Electrochemical Active Manganese Dioxide

A&met-Non-stoichiometric manganese dioxide prepared electrochemically at room temperature and suspended in dilute sulphuric acid is used to oxidise isosafrole to piperonal in 54% isolated yield. The manganese dioxide-manganese@) sulphate system can be recycled electrochemically at high current density. It has the further advantage that water-soluble materials derived from the chemical oxidation...

متن کامل

Elastic Layered Metal-organic Framework Sorbents for Carbon Capture

Introduction Elastic layered metal-organic framework (ELM) adsorbents exhibit a flexible two-dimensional latent porous crystalline structure. ELMs undergo abrupt reversible gated sorption transitions from an empty collapsed structure to a filled expanded porous state through cooperative adsorption of guest molecules between layer planes. Gated adsorption has been observed for methane, nitrogen,...

متن کامل

Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries.

Large-scale electric energy storage is fundamental to the use of renewable energy. Recently, research and development efforts on room-temperature sodium-ion batteries (NIBs) have been revitalized, as NIBs are considered promising, low-cost alternatives to the current Li-ion battery technology for large-scale applications. Herein, we introduce a novel layered oxide cathode material, Na0.78Ni0.23...

متن کامل

DISSOLUTION KINETICS OF MANGANESE DIOXIDE ORE IN SULFURIC ACID IN THE PRESENCE OF FERROUS ION

Abstract: In this paper, kinetics of reductive leaching of manganese dioxide ore by ferrous ion in sulfuric acid media has been examined. Experimental results show that increasing temperature from 20 to 60 °C and decreasing ore particle size from −16+20 to −60+100 mesh considerably enhance both the dissolution rate and efficiency. Molar ratios of Fe2+/MnO2 and H2SO4/MnO2 in excess to the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014